GETTING THE BASICS RIGHT

AN INTRODUCTION TO BASIC **DIGITAL PHOTOGRAPHY**

Sinclair Scott President, Witney Photo Group

30 September 2014

- Subjects to be covered
 - How does a digital camera work
 - Types of Cameras
 - Other kit
 - Images in your Computer Exposure Problems
 - Lenses and Aperture
 - What is in Focus
 - Shutter speed

- Sensitivity
- White Light
- Driving the camera
- Making Images
- Post Processing

– Flash

Notes on this Talk

- Please enjoy this talk without taking notes
- My email address is

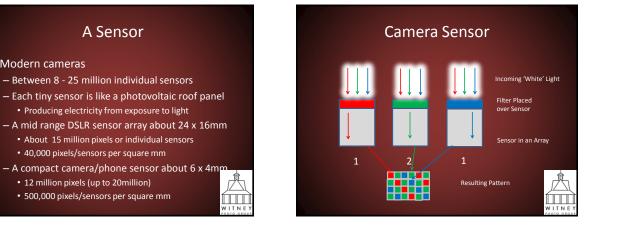
sinclair.scott@btinternet.com

- Email me
 - All the slides are available for you to see

What Photographs do YOU Take

- Family and Friends – Weddings, Birthdays; Children; Grandchildren
- Visits to places of interest
 - Holidays, places and events
 - Property Visits, National Trust
 - Gardens, RHS, Open Gardens Schemes
 - Animals and Birds
 - Scenery

Why do you Take these Photos


- You want to keep a record yourself
- Or show others -
 - The beauty of your experience
 - The interest of the experience
 - The fact that you were where you were
 - Someone may have asked you to take photos
 - You may wish to enter the image in a competition
- In ALL these circumstances
 - You have to achieve a good photo
 - Or let the others down

Modern cameras

Sinclair Scott, President Witney Photo Group

Light Measured

- Sensor ready to receive light
- In 1/50th second a DSLR (compacts take longer)
 - Calculates the light amount
 - Sets the shutter speed
 - Sets the lens aperture size
 - Calculates the white light value
 - Sets all the other options we have keyed in
 - Focuses the image
- The Shutter fires We have an image !!

How does a Digital Camera Work

Digital Cameras What is Available?

- Sensors 6 x 4mm
- Lightweight, huge depth of field
- Little control over the camera

Compact Camera

Produce great results

- Little scope to develop camera skills
- Fully Automatic
 - £100 (Canon Powershot; Nikon Coolpix S01)
 - To £500 (Canon Ixus; Nikon Coolpix P520)
- More advanced models becoming available

Interchangeable Lens Cameras

• Canon M; £500 - £650

- Nikon 1; £330 £700
 - Flashguns, accessories and lenses additional cost
 - Immediate image capture no delay
 - Lightweight slightly larger than a compact
 - Greater control over the image
 - Larger sensor than a compact
 - Nikon 1 13 x 9mm (area 5 x larger than compact sensor
 - Canon M 22 x 15mm (14 x compact)
 - Can create RAW images
 Creative post processing

- Body from £300 to £5,000
 - Lenses from £150 to £15,000 each

- You choose the lens(es) you require

- Complete systems with lens can be bought

Change lenses as required

Huge variation in price

Sold as a body only

DSLR

- Larger sensors
 - Full frame 36 x 24mm
 - Smaller Sensors
 - Canon 22 x 15mm
 - Nikon 24 x 16mm
- Sophisticated software in camera
 - Complete control over all functions
 - Or use as an automatic compact

Where to Buy a Camera

Digital Single Lens Reflex (DSLR)

- Cameras are Specialised Kit AND EXPENSIVE

 Do not buy on-line without lots of advice
- Find a Knowledgeable Friend to Advise
 Join a Camera Club
- Find a shop willing to advise
- Buy the main kit from that shop
- Often no more expensive than on-line
- Can go back and ask how it works

Other Kit Needed

- Can obtain full after sales service

Digital Cameras What is Available?

Sinclair Scott, President Witney Photo Group

Other Kit

- 1 or 2 Spare batteries
- Lens Filters
 - Lens protective filters £40/£85 per lens
 - Regular cleaning removes the magnesium fluoride coating on the lens
 - Polaroid Filter reduces reflections, enhances colours
 - Neutral Density Filters create milky water effects

Other Kit

- Memory cards 8 Gigabite good capacity
- Camera bag must be rain proof
 Big enough to carry other kit
- Tripod including three way head £25 to £500

 Trade off carrying weight against stability
- Monopods
 - Provide a huge increase in stability
 - Requires a tilting head

Photo Computer File Types

- Most cameras create a .jpg (jpeg) file
 Joint Photographic Experts Group
- Most DSLRs also may create a RAW file

 In a RAW state as minimal processing been done
- Tiff and PSD files are created in software

 Tagged Image File Format
 - PSD file Adobe Photoshop software
 Both highest quality

Jpg Files

- A jpg file has been 'processed' and compressed
 - Reduced in file size
 - Called a 'Lossy' file as it compresses the data
 - Losing information that cannot be recovered
 - Each time you save a jpg
 - Lose more data information
 - Ideal for compact cameras
 - Cannot give full quality image compared with RAW

RAW Files

- Contain minimally processed information
 - You see a part processed image on the screen
 - Further work in a RAW conversion package
 - Lightroom, Photoshop, camera software
- Allows you to change the file information

 Exposure, white balance, sharpen etc. etc.
 Without any loss of information/quality
- Then option to convert to a jpg or tiff
 - Or best quality print direct from the RAW image

Comparison of File Sizes

- For the same image:-
- JPG image file 8 megabites
- RAW image 22 megabites

 Note the jpg file has lost/destroyed 14 megabites (60%) of the original file information
- Tiff image file 90 megabites

 Converted from a RAW file
 Huge file size, over 10x the jpg equivalent
- Many huge files create computer disc storage problems

Storing Your Image Files

- You create images on a Memory Card
- These should be downloaded as soon as possible
 - To avoid losing the images
 - To free up space on the memory card
 - After downloading format the memory card
 - Losing all the images on the card
 - Ready for more images

Storing your Image Files

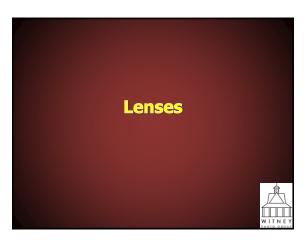
- All memory systems are liable to failure
- Breakdown, virus, accidental erasure
- All files should be downloaded in at least 2 places
 - 1. Main Hard Disc on a computer
 - 2. A back-up hard disk
 - Maybe 2 of these
 - Some even insist on a third location not in the same property to secure against theft or fire

Storage Systems

- Store images in the MS Windows Filing System
- Libraries
 - Documents, Music, Pictures, Videos
 - In Pictures create a Year Folder (2014)
 - In the year folder create 'Events' folders
 - Event e.g. 04 20 Blenheim Palace
 - 04 Month of the Year
 - 20 Day of the Month
 - Blenheim Palace Location of the images

Other Storage Systems

- Adobe Photoshop Elements or Lightroom


 Sophisticated filing systems
- You tag (categorise) images with subjects
 - Family, year, landscape, best (poor) quality, etc
 Each image can have many tags
- Allows you to recall all the e.g. landscapes
 - Or those marked best landscapes
 - Or those landscapes in a certain year

Sinclair Scott, President Witney Photo Group

Photographs in your Computer

Lens Choice

- Lens choice is most important
- Its quality determines the image outcome
- A £1,500 camera with a £100 lens
 - Poor image quality
- A £2,000 lens with a £250 DSLR
 Superb image quality
- Ideally create a balance between Camera and Lens Quality

Lens Aperture

- Lens aperture area of light
- This aperture is variable
- Maximum (largest) aperture

 Lowest number
 - Defines the lens 'speed'
 - Perhaps f2.8, f4, f5.6 etc
- Highest number is smallest aperture – f16, f22, f32 etc

Lens Aperture

- Very best lenses have largest aperture
- Each aperture 'stop' allows half the light of the previous
 - -1.4 2 2.8 4 5.6 8 11 16 32
- We will see later how to use the different apertures
- Lens not sharpest fully open (widest aperture)
 Close down 1 or 2 stops to be fully sharp

Lens Quality

- Amount of glass in a lens

 Speed and the Quality of the lens
- Canon f2.8 L IS 70 200 zoom lens – £1,800 - 1.3kg
- Canon f4.0 L IS 70 200 zoom lens
 £900 0.76kg
- Canon f4.5 5.6 IS 55 250mm zoom lens
 £200 0.4kg

Sinclair Scott, President Witney Photo Group

Lens Manufacturers

- Canon or Nikon
- Sigma
 - Tokina, Tamron
 - Make lenses for Canon, Nikon etc
- For ALL Lenses, you pay for what you get
 - Higher price
 - Faster lens, better sharpness
 - More robust construction

Focal Length

- Focal lengths are a guide to the angle of view of any lens
 - A short focal length e.g. 17mm wide angleA longer focal length e.g. 200mm telephoto
- Stated focal lengths relate to a theoretical 36 x 24mm sensor (f35mm film size)
 - Most cameras do not have a 36mm x 24mm sensor

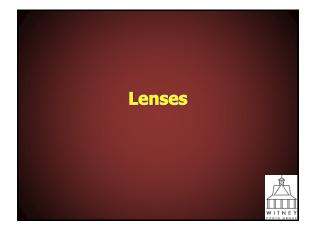
Focal Length

- The size of the sensor in a camera affects the lens's acceptance angle or angle of view.
- A full frame camera has sensor 36mm x 24mm

- Many DSLR cameras have smaller sensors
- Multiply the focal length

- x 1.6 Canon

– x 1.5 Nikon



Choice of Focal Length

- You will require a relatively wide angle lens

 A workhorse, probably zoom ± 17mm 50mm
 - Buildings, groups of people, general photos
 - Option to crop unwanted portion from an image
- You may also decide on a telephoto lens
 70mm 200mm
 - To bring far subjects closer wildlife, sport
- Others special lenses
 - Macro, Super-telephoto, etc

Sinclair Scott, President Witney Photo Group

Depth of Field

- Depth of Field
 - Also known as Depth of Focus
- The point of focus is chosen
- Other parts of the image will also be acceptably sharp
 - Gradually going out of focus
 - In front of the point of focus
 - Behind the point of focus

Depth of Field

- Definition is:
 - Depth of Field is the distance between the nearest and farthest points in an image where the image is acceptably sharp
- By changing the aperture settings you change the AMOUNT of an image that is sharp
- Therefore by controlling the aperture
 - We control the amount of image that is sharp

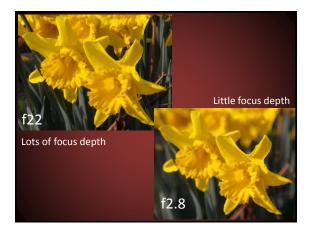
Depth of Field

- No simple set rules on depth of field

 It comes with experience and trial and error
- Depth of Field will be less
 - If the subject is closer
 - OR If the lens is longer
- Normally acceptable sharpness is
 - Twice the distance behind the point of focus
 - Than in front of the point of focus

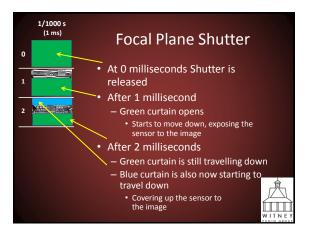
Depth of Field

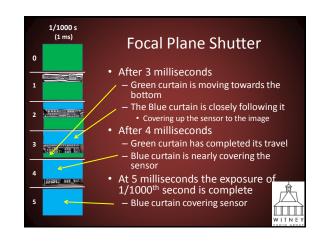
- The focus depth depends on the aperture
- BUT ALSO:
 - If you are zoomed back a wide angle shot
 Lots will be in focus
 - If you are zoomed in a long distance shot
 Less will be in focus
- Wide angle increases focus depth
- Close up shots shallow focus depth

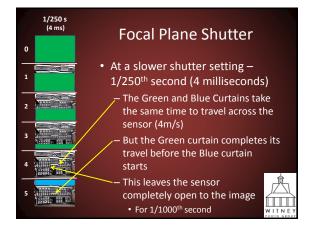


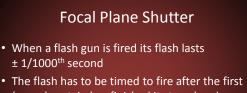
Sinclair Scott, President Witney Photo Group


Focal Plane Shutter


- All cameras have a device setting the period of time that the sensor is exposed to the image
 - High end DSLRs have a range of about 1/4,000th second to about 30 seconds
 - May also be set to open for many minutes
- Most digital cameras now use some form of focal plane shutter
 - 2 curtains moving vertically downwards over the sensor
- How does this work?




Sinclair Scott, President Witney Photo Group

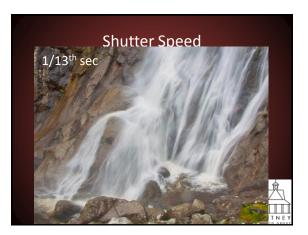


- (green) curtain has finished its travel and before the second (blue) curtain has started
- The fastest shutter speed this can be achieved is called the flash sync speed
 - Varies at 1/125th or 1/250th second

Sinclair Scott, President Witney Photo Group

Shutter Speeds

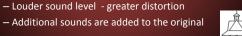
- Why select shutter speeds?
- To ensure the image is sharp
 - If you are photographing a landscape
 And you see the shutter speed is set to 2 seconds
 - Hand holding for say 2 seconds is impossible
 - Have to reduce the time the shutter is open
- To deliberately blur the image
 - Set a long shutter speed



Shutter Speed – Rough Rule of Thumb

- For reasonably sharp images
 - The shutter speed should be equal to the focal length of the lens
- Examples:-
 - 24mm lens shutter speed of 1/25th second
 - 100mm lens shutter speed of 1/100th second
- 300mm lens shutter speed of 1/300th second
- Image stabilisers allow these speeds to be ÷ 4
 2 Stops

Sinclair Scott, President Witney Photo Group



ISO Sensitivity

- ISO is the International 'Acronym' for - International Organisation for Standardisation
- You can select the ISO sensitivity of the sensor
- Voltage from the sensor can be amplified To create greater sensitivity

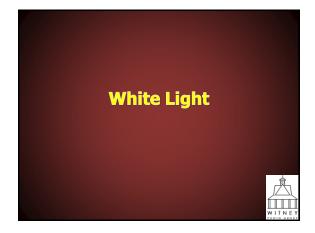
- Louder sound level - greater distortion

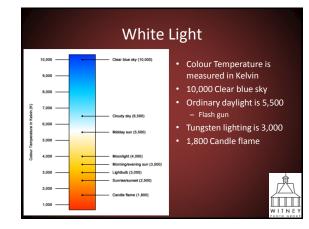
In a sound amplifier

ISO Settings

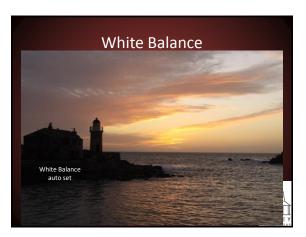
- The same applies to a camera
 - The more the image current for the sensor is amplified
 - The greater amount of additional 'distortions' are added
- We call the additional bits 'noise' - Additions to the pure image
- ISO Settings range from 100 to 12,800 + - Lowest ISO gives best images

Sinclair Scott, President Witney Photo Group




ISO Sensitivity

- Cameras have menu settings that allow you to modify the 'noise' levels at high sensitivity
 - Look in your camera manual
 - Post processing software also can reduce noise
- The lessening of 'noise ' levels is normally a trade-off against sharpness
- Normally cameras will give you excellent 'noiseless' results at ISO 800 or below.
 Depends on the sort of image you are creating



Sinclair Scott, President Witney Photo Group

White Light

- Set camera to AWB (Automatic White Balance)
 - Camera finds something white in the image to make a decision
 - Cameras can make a wrong decision
- Or you can select your own white balance
- Problem images?
 - Sunsets, After dark, Mixed daylight and tungsten lighting
- Often easier to adjust in post processing

Sinclair Scott, President Witney Photo Group

